• Home
  • About
  • Contact
  • Help
skip to main | skip to sidebar

Chemical Diary

Blog ini di buat untuk memberikan informasi, selamat mirsani...

Selasa, 16 Oktober 2012

Netralisasi

Konsep paling mendasar dan praktis dalam kimia asam basa tidak diragukan lagi adalah netralisasi. Fakta bahwa asam dan basa dapat saling meniadakan satu sama lain telah dikenal baik sebagai sifat dasar asam basa sebelum perkembangan kimia modern.

a. Netralisasi

Neutralisasi dapat didefinisikan sebagai reaksi antara proton (atau ion hidronium) dan ion hidroksida membentuk air. Dalam bab ini kita hanya mendiskusikan netralisasi di larutan dalam air.
H+ + OH-–> H2O (9.33)
H3O+ + OH-–> 2H2O (9.34)
Jumlah mol asam (proton) sama dengan jumlah mol basa (ion hidroksida).
Stoikiometri netralisasi
nAMAVA = nBMBVB
jumlah mol proton jumlah mol ion hidroksida
subskrip A dan B menyatakan asam dan basa, n valensi, M konsentrasi molar asam atau basa, dan V volume asam atau basa.
Dengan bantuan persamaan di atas, mungkin untuk menentukan konsentrasi basa (atau asam) yang konsentrasinya belum diketahui dengan netralisasi larutan asam (atau basa) yang konsentrasinya telah diketahui. Prosedur ini disebut dengan titrasi netralisasi.

b. Garam

Setiap asam atau h=garam memiliki ion lawannya, dan reaksi asam basa melibatkan ion-ion ini. Dalam reaksi netralisasi khas seperti antara HCl dan NaOH,

HCl+NaOH–>NaCl+H2O(9.35)
asam basa garam air 
Selain air, terbentuk NaCl dari ion khlorida, ion lawan dari proton, dan ion natrium, ion lawan basa. Zat yang terbentuk dalam netralisasi semacam ini disebut dengan garam. Asalkan reaksi netralisasinya berlangsung dalam air, baik ion natrium dan ion khlorida berada secara independen sebagai ion, bukan sebagai garam NaCl. Bila air diuapkan, natrium khlorida akan tinggal. Kita cenderung percaya bahwa garam bersifat netral karena garam terbentuk dalam netralisasi. Memang NaCl bersifat netral. Namun, larutan dalam air beberapa garam kadang asam atau basa. Misalnya, natrium asetat, CH3COONa, garam yang dihasilkan dari reaksi antara asam asetat dan natrium hidroksida, bersifat asam lemah.
Sebaliknya, amonium khlorida NH4Cl, garam yang terbentuk dari asam kuat HCl dan basa lemah amonia, bersifat asam lemah. Fenomena ini disebut hidrolisis garam.
Diagram skematik hidrolisis ditunjukkan di Gambar 9.1. Di larutan dalam air, garam AB ada dalam kesetimbangan dengan sejumlah kecil H+ dan OH- yang dihasilkan dari elektrolisis air menghasilkan asam HA dan basa BOH (kesetimbangan dalam arah vertikal). Karena HA adalah asam lemah, kesetimbangan berat ke arah sisi asam, dan akibatnya [H+] menurun. Sebaliknya, BOH adalah basa kuat dan terdisosiasi sempurna, dan dengan demikian todak akan ada penurunan konsentrasi OH-. Dengan adanya disosiasi air, sejumlah H+ dan OH- yang sama akan terbentuk.
Dalam kesetimbangan vertikal di Gambar, kesetimbangan asam ke arah bawah, dan kesetimbangan basa ke arah atas. Akibatnya [OH-] larutan dalam air meningkat untuk membuat larutannya basa. Penjelasan ini juga berlaku untuk semua garam dari asam lemah dan basa kuat.

Gambar Hidrolisis garam.
Sebagai rangkuman, dalam hidrolisis garam dari asam lemah dan basa kuat, bagian anion dari garam bereaksi dengan air menghasilkan ion hidroksida.
A- + H2O –> HA + OH- (9.36)
Dengan menuliskan reaksi ini sebagai kesetimbangan, hidrolisis garam dapat diungkapkan dengan cara kuantitatif
A- + H2O HA + OH- (9.37)

c. Kurva titrasi

Dalam reaksi netralisasi asam dan basa, atau basa dengan asam, bagaimana konsentrasi [H+], atau pH, larutan bervariasi? Perhitungan [H+] dalam titrasi asam kuat dengan basa kuat atau sebaliknya basa kuat dengan asam kuat tidak sukar sama sekali. Perhitungan ini dapat dilakukan dengan membagi jumlah mol asam (atau basa) yang tinggal dengan volume larutannya.
Perhitungannya akan lebih rumit bila kombinasi asam lemah dan basa kuat, atau yang melibatkan asam kuat dan basa lemah. [H+] akan bergantung tidak hanya pada asam atau basa yang tinggal, tetapi juga hidrolisis garam yang terbentuk.
Plot [H+] atau pH vs. jumlah asam atau basa yang ditambahkan disebut kurva titrasi (Gambar 9.2). Mari kita menggambarkan kurva titrasi bila volume awal asam VA, konsentrasi asam MA, dan volume basa yang ditambahkan vB dan konsentrasinya adalah MB.

(1) TITRASI ASAM KUAT DAN BASA KUAT.

[1] sebelum titik ekivalen:
Karena disosiasi air dapat diabaikna, jumlah mol H+ sama dengan jumlah sisa asam yang tinggal
[H+] = (MAVA – MBvB)/(VA + vB) (9.45)
[2] Pada titik ekivalen:
Disosiasi air tidak dapat diabaikan di sini.
[H+] = √Kw = 10-7 (9.46)
[3] setelah titik ekivalen:
Jumlah mol basa berlebih sama dengan jumlah mol ion hidroksida. [OH-] dapat diperoleh dengan membagi jumlah mol dengan volume larutan. [OH-] yang diperoleh diubah menjadi [H+].
[OH-] = (MBvB – MAVA)/(VA + vB) (9.47)
[H+] = Kw/[OH-] = (VA + vB)Kw/(MBvB – MAVA) (9.48)
Kurvanya simetrik dekat titik ekivalen karena vB ≒ VA.
Titrasi 10 x 10-3 dm3 asam kuat misalnya HCl 0,1 mol dm-3 dengan basa kuat misalnya NaOH 0,1 mol dm-3 menghasilkan kurva titrasi. Pada tahap awal, perubahan pHnya lambat. Perubahan pH sangat cepat dekat titik ekivalen (vB = 10 x10-3 dm3). Dekat titik ekivalen, pH berubah beberapa satuan hanya dengan penambahan beberapa tetes basa.

2. TITRASI ASAM LEMAH DENGAN BASA KUAT

Hasilnya akan berbeda bila asam lemah dititrasi dengan basa kuat. Titrasi 10 x 10-3 dm3 asam asetat 0,1 mol dm-3 dengan NaOH 0,1 mol dm-3 merupakan contoh khas (Gambar 9.2(b)).
[1] Titik awal: vB = 0. pH di tahap awal lebih besar dari di kasus sebelumnya.
[H+] = MAα (9.49)
α adalah tetapan disosiasi asam asetat.
[2] sebelum titik ekivalen: sampai titik ekivalen, perubahan pH agak lambat.
[3] pada titik ekivalen (vB = 10 x 10-3 dm3): pada titik ini hanya natrium asetat CH3COONa yang ada. [H+] dapat diperoleh dengan cara yang sama dengan pada saat kita membahas hidrolisis garam.
[4] setelah titik ekivalen. [H+] larutan ditentukan oleh konsentrasi NaOH, bukan oleh CH3COONa.
Perubahan pH yang perlahan sebelum titik ekivalen adalah akibat bekerjanya buffer (bagian 9.3 (d)). Sebelum titik ekivalen, terdapat larutan natrium asetat (garam dari asam lemah dan bas kuat) dan asam asetat (asam lemah). Karena keberadaan natrium asetat, kesetimbangan disosiasi natrium asetat
CH3COOH H+ + CH3COO- (9.50)
bergeser ke arah kiri, dan [H+] akan menurun. Sebagai pendekatan [CH3COO-] = cS [HA] ≒ c0.
cS adalah konsentrasi garam, maka
[H+]cS/ c0= Ka,
∴ [H+] = (c0/cS)Ka (9.51)
Bila asam ditambahkan pada larutan ini, kesetimbangan akan bergeser ke kiri karena terdapat banyak ion asetat maa asam yang ditambahkan akan dinetralisasi.
CH3COOH H+ + CH3COO- (9.52)
Sebaliknya, bila basa ditambahkan, asam asetat dalam larutan akan menetralkannnya. Jadi,
CH3COOH + OH- H2O + CH3COO- (9.53) Jadi [H+] hampir tidak berubah.

(3) TITRASI BASA LEMAH DENGAN ASAM KUAT

Titrasi 10 x 10-3 dm3 basa lemah misalnya larutan NH3 0,1 mol dm-3 dengan asam kuat misalnya HCl 0,1 mol dm-3 (Gambar 9.3). Dalam kasus ini, nilai pH pada kesetimbangan agak lebih kecil daripada di kasus titrasi asam kuat dengan basa kuat. Kurvanya curam, namun, perubahannya cepat di dekat titik kesetimbangan. Akibatnya titrasi masih mungkin asalkan indikator yang tepat dipilih, yakni indikator dengan rentang indikator yang sempit.

(4) TITRASI BASA LEMAH (ASAM LEMAH) DENGAN ASAM LEMAH (BASA LEMAH).

Dalam titrasi jenis ini, kurva titrasinya tidak akan curam pada titik kesetimbangan, dan perubahan pHnya lambat. Jadi tidak ada indikator yang dapat menunjukkan perubahan warna yang jelas. Hal ini berarti titrasi semacam ini tidak mungkin dilakukan.

d. Kerja bufer

Kerja bufer didefinisikan sebagai kerja yang membuat pH larutan hampir tidak berubah dengan penambahan asam atau basa. Larutan yang memiliki kerja bufer disebut larutan bufer. Sebagian besar larutan bufer terbentuk dari kombinasi garam (dari asam lemah dan basa kuat) dan aam lemahnya. Cairan tubuh organisme adalah larutan bufer, yang akan menekan perubahan pH yang cepat, yang berbahaya bagi makhluk hidup.
Nilai pH larutan bufer yang terbuat dari asam lemah dan garamnya dapat dihitung dengan menggunakan persamaan berikut.
pH = pKa + log([garam]/[asam]) (9.54)
Tabel 9.2 memberikan beberapa larutan bufer.
Tabel Beberapa larutan bufer.

e. Indikator

Pigmen semacam fenolftalein dan metil merah yang digunakan sebagai indikator titrasi adalah asam lemah (disimbolkan dengan HIn) dan warnanya ditentukan oleh [H+] larutan. Jadi,
HIn H+ + In- …. (9.55)
Rasio konsentrasi indikator dan konjgatnya menentukan warna larutan diberikan sebagai:
KIn = [H+][In-]/[HIn], ∴ [In-]/[HIn] = KIn/[H+] … (9.56)
KIn adalah konstanta disosiasi indikator.
Rentang pH yang menimbulkan perubahan besar warna indikator disebut dengan interval transisi. Alasan mengapa ada sedemikian banyak indikator adalah fakta bahwa nilai pH titik ekivalen bergantung pada kombinasi asam dan basa. Kunci pemilihan indikator bergantung pada apakah perubahan warna yang besar akan terjadi di dekat titik ekivalen. Di Tabel didaftarkan beberapa indikator penting.
Tabel Indikator penting dan interval transisinya.
Indikatorinterval transisiperubahan warna(asam–>basa)
Biru timol1,2-2,8merah –> kuning
Metil oranye3,1-4,4merah –> kuning
Metil merah4,2-6,3merah –> kuning
bromotimol biru6,0-7,6kuning–> biru
merah kresol7,2-8,8kuning –> merah
fenolftalein8,3-10,0tak berwarna–> merah
alizarin kuning10,2-12,0kuning–> merah
Diposting oleh Unknown di 23.28
Kirimkan Ini lewat Email BlogThis! Bagikan ke X Berbagi ke Facebook

0 komentar:

Posting Komentar

Posting Lebih Baru » « Posting Lama
Langganan: Posting Komentar (Atom)

Daftar Link

  • My Pantonanews

Program Studi Teknik Industri

  • PELAKSANAAN TEST LINGUSKILL (LS) BAHASA INGGRIS
  • Pengumuman Libur Nasional dan Cuti Bersama
  • Halal Bi halal Civitas Akademika Universitas Mercu Buana
  • Buka Puasa Bersama FT
  • Pengumuman Libur Perkuliahan pada Hari Raya Idul Fitri 1444 H

Daftar Blog Saya

  • Chem-Is-Try.Org | Situs Kimia Indonesia |
    Produksi Listrik dari Grafena dan Air Garam - [image: image] Penemuan mengejutkan dan terdengar tak masuk akal datang dari China. Sebuah tim riset menghasilkan listrik hanya dengan menggerakkan air g...
    10 tahun yang lalu
  • Oel Chemistry
    Dari HOBI menjadi HOKI - Hobi adalah suatu kegiatan yang disenangi yang dilakukan setiap hari atau di waktu luang. Hobi bukan hanya bisa memberikan kesenangan, namun bisa mendatang...
    11 tahun yang lalu
  • PantonaNews
    -

Blog Archive

  • ►  2013 (121)
    • ►  Juli (1)
    • ►  Juni (46)
    • ►  Mei (10)
    • ►  April (26)
    • ►  Maret (38)
  • ▼  2012 (93)
    • ►  Desember (35)
    • ►  November (20)
    • ▼  Oktober (34)
      • Sintesis organik Apa itu Sintesis Organik?Sinte...
      • Lahirnya konsep sintesis Salah satu tujuan utama ...
      • Elektrolisis a. Sel Elektrolisis : a.Terjadi pe...
      • Sel-sel yang digunakan dalam praktek a. Baterai ...
      • Potensial sel - Gaya yang dibutuhkan untuk mendo...
      • Sel galvani Sel Galvani atau disebut juga dengan ...
      • Konsep Reaksi Oksidasi dan Reduksi (Redoks) Jeja...
      • Netralisasi Konsep paling mendasar dan praktis d...
      • TEORI ASAM BASA Teori asam basa Arrhenius: As...
      • Konsep Asam dan Basa Teori Asam-Basa Arrhenius ...
      • Berbagai kristal Tabel Berbagai jenis krista...
      • Struktur padatan kristalin a. Susunan terjejal B...
      • Larutan  Larutan terdiri atas cairan yang melarut...
      • Kesetimbangan fasa dan diagram fasa Selama ini ...
      • Karakteristik Cairan Gas dapat dicairkan dengan ...
      • TEORI KINETIK GAS Suhu suatu gas monatomik idea...
      • Apa perbedaan gas nyata dan gas id...
      • HUKUM GAS IDEAL Gas merupakan satu dari tiga wuju...
      • KEPERIODIKAN SIFAT SENYAWA SEDERHANA oleh ROCKY , ...
      • Sifat-Sifat Periodik Unsur Sifat-Sifat Period...
      • TAbel periodi Unsur dan Cara Menghafalnya Tabel ...
      •      SENYAWA ANORGANIK    Kimia anorganik adala...
      • MOLEKUL SEDERHANA Unsur-un...
      • JENIS IKATAN KIMIA Berdasarkan perubahan ...
      • Teori kuantum ikatan kimia a. Metoda Heitler d...
      • Teori ikatan kimia berdasarkan teori Bohr a. Ika...
      • SOAL LATIHAN STRUKTUR ATOM pilahan ganda aja yaa...
      • Mekanika kuantum Densitas kebolehjadian dar...
      • Dasar-dasar teori kuantum klasik  Dasar-dasar teo...
      • Perkembangan Model Atom Model Atom John Dalton H...
      • Penemuan Elektron dan Model Atom Thomson J...
      • Stoikiometri Pengertian Dasar1 mol = Bilangan Avo...
      • Komponen-komponen materi a. Atom Dunia Kimia be...
      • Ada yang Lebih Kecil dari Atom?  Tahukah kamu, a...
    • ►  September (4)

About Me

Unknown
Lihat profil lengkapku

Daftar Blog Saya

Selamat Datang di Blog Saya
Matur suwun sampun mampir ting blog kulo
Diberdayakan oleh Blogger.

Entri Populer

  • Industri Oleokimia
    Oleokimia merupakan bahan kimia yang berasal dari minyak/lemak alami, baik tumbuhan maupun hewani. Pada saat ini, permintaan akan produk ol...
  • (tanpa judul)
         SENYAWA ANORGANIK    Kimia anorganik adalah cabang kimia yang mempelajari sifat dan reaksi senyawa anorganik . Ini mencakup semu...
  • Udara Bersih, Lingkungan Sehat
    Udara Bersih, Lingkungan Sehat Lingkungan sehat adalah lingkungan yang bersih. Lingkungan sehat memiliki ciri-ciri udara bersih dan se...
  • (tanpa judul)
    Konsep Asam dan Basa Teori Asam-Basa Arrhenius Asam-Basa dalam Kehidupan Sehari-hari Sejak berabad-abad yang lalu, para pakar men...

Pengikut

 
Copyright © Chemical Diary. All rights reserved.
Blogger template created by Templates Block. Price India. Hostgator Coupon.
more Free Templates at MyTemplatez