1. Lahirnya kimia
LAHIRNYA KIMIA Kimia modern dimulai oleh kimiawan Perancis
Antoine Laurent Lavoisier (1743-1794). Ia menemukan hukum kekekalan
massa dalam reaksi kimia, dan mengungkap peran oksigen dalam pembakaran.
Berdasarkan prinsip ini, kimia maju di arah yang benar.
Jalan dari filosofi Yunani kuno ke teori atom modern tidak selalu mulus. Di Yunani kuno, ada perselisihan yang tajam antara teori atom dan penolakan keberadaan atom.
Akar ilmu kimia dapat dilacak hingga fenomena pembakaran. Api merupakan kekuatan mistik yang mengubah suatu zat menjadi zat lain dan karenanya merupakan perhatian utama umat manusia
2. Komponen-komponen materiJalan dari filosofi Yunani kuno ke teori atom modern tidak selalu mulus. Di Yunani kuno, ada perselisihan yang tajam antara teori atom dan penolakan keberadaan atom.
Akar ilmu kimia dapat dilacak hingga fenomena pembakaran. Api merupakan kekuatan mistik yang mengubah suatu zat menjadi zat lain dan karenanya merupakan perhatian utama umat manusia
KOMPONEN MATERI Materi didefinisikan sebagai kumpulan atom. Atom adalah komponen terkecil unsure yang tidak akan mengalami perubahan dalam reaksi Kimia. Semua atom terdiri atas komponen yang sama, sebuah inti dan electron. Diameter inti sekitar 10–15-10–14 m, yakni sekitar 1/10 000 besarnya atom. Lebih dari 99 % massa atom terkonsentrasi di inti. Inti terdiri atas proton dan neutron, dan jumlahnya menentukan sifat unsur.
3. Stoikiometri
Dalam ilmu kimia, stoikiometri (kadang disebut stoikiometri reaksi untuk membedakannya dari stoikiometri komposisi) adalah ilmu yang mempelajari dan menghitung hubungan kuantitatif dari reaktan dan produk dalam reaksi kimia (persamaan kimia). Kata ini berasal dari bahasa Yunani stoikheion (elemen) dan metriā (ukuran).
Contoh:



4. Penemuan elektron
Menurut Dalton dan ilmuwan sebelumnya, atom tak terbagi, dan merupakan komponen mikroskopik utama materi. Jadi, tidak ada seorangpun ilmuwan sebelum abad 19 menganggap atom memiliki struktur, atau dengan kata lain, atom juga memiliki konponen yang lebih kecil. Keyakinan bahwa atom tak terbagi mulai goyah akibat perkembangan pengetahuan hubungan materi dan kelistrikan yang berkembang lebih lanjut.
Faraday memberikan kontribusi yang sangat penting, ia menemukan bahwa jumlah zat yang dihasilkan di elektroda-elektroda saat elektrolisis (perubahan kimia ketika arus listrik melewat larutan elektrolit) sebanding dengan jumlah arus listrik. Ia juga menemukan di tahun 1833 bahwa jumlah listrik yang diperlukan untuk menghasilkan 1 mol zat di elektroda adalah tetap (96,500 C). Hubungan ini dirangkumkan sebagai hukum elektrolisis Faraday.
5. Model atom
a. Ukuran atom
Sperti telah disebutkan di bagian sebelumnya, ketakterbagian atom perlahan mulai dipertanyakan. Pada saat yang sama, perhatian pada struktur atom perlahan menjadi semakin besar. Bila orang mempelajari struktur atom, ukurannya harus dipertimbangkan. Telah diketahui bahwa sebagai pendekatan volume atom dapat diperkirakan dengan membagi volume 1 mol padatan dengan konstanta Avogadro.
b. Penemuan inti atom
Setelah melakukan banyak kemajuan dengan mempelajari keradioaktifan, fisikawan Inggris Ernest Rutherford (1871-1937) menjadi tertarik pada struktur atom, asal radiasi radioaktif. Ia menembaki lempeng tipis logam (ketebalan 104 atoms) dengan berkas paralel partikel α (di kemudian hari ditemukan bahwa partikel α adalah inti atom He). Ia merencanakan menentukan sudut partikel yang terhambur dengan menghitung jumlah sintilasi di layar ZnS (Gambar 2.2). Hasilnya sangat menarik. Sebagian besar partikel melalui lempeng tersebut. Beberapa partikel terpental balik. Untuk menjelaskan hal yang tak terduga ini, Rutherford mengusulkan adanya inti atom .
6. Dasar-dasar teori kuantum klasik
a. Spektrum atom
Bila gas ada dalam tabung vakum, dan diberi beda potensial tinggi, gas akan terlucuti dan memancarkan cahaya. Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garisspektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom, spektrum ini disebut dengan spektrum atom.
b. Teori Bohr
• Tidak ada energi yang dipancarkan bila elektron berada dalam keadaan stasioner ini. Bila elektron berpindah dari keadaan stasioner berenergi tinggi ke keadaan stasioner berenergi lebih rendah, akan terjadi pemancaran energi. Jumlah energinya, h ν, sama dengan perbedaan energi antara kedua keadaan stasioner tersebut.
c. Spektra atom hidrogen
Menurut teori Bohr, energi radiasi elektromagnetik yang dipancarkan atom berkaitan dengan perbedaan energi dua keadaan stationer i dan j.
7.Kelahiran mekanika kuantum
Heisenberg menjelaskan bahwa hasil kali antara ketidakpastian posisi x dan ketidakpastian momentum p akan bernilai sekitar konstanta Planck:
xp = h (2.13)
Hubungan ini disebut dengan prinsip ketidakpastian Heisenberg.
Perkiraan ketidakpastian kecepatannya hampir setengah kecepatan cahaya (2,998 x108 m s-1) mengindikasikan bahwa jelas tidak mungkin menentukan dengan tepat posisi elektron. Jadi menggambarkan orbit melingkar untuk elektron jelas tidak mungkin.
(-h2/8π2m)Ψï¼»(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2)ï¼½+V(x, y, z)Ψ = EΨ … (2.19)
Bila didefinisikan ∇2 sebagai:
(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2) = ∇2 … (2.20)
Maka persamaan Schrödinger tiga dimensi akan menjadi:
(-h2/8π2m)∇2Ψ +VΨ = EΨ … (2.21)
atau ∇2Ψ +(8π 2m/h2)(E -V)Ψ = 0 … (2.22)
Energi potensial atom mirip hidrogen diberikan oleh persamaan berikut dengan Z adalah muatan listrik.
V = -Ze2/4πε0r … (2.23)
Bila anda substitusikan persamaan (2.23) ke persamaan (2.22), anda akan mendapatkan persamaan berikut.
∇2Ψ+(8π2m/h2)ï¼»E + (Ze2/4πε0r)ï¼½Ψ = 0 … (2.24)
Ringkasnya, penyelesaian persamaan ini untuk energi atom mirip hidrogen cocok dengan yang didapatkan dari teori Bohr.
d. Orbital Fungsi gelombang elektron disebut dengan orbital. Bila bilangan koantum utama n = 1, hanya ada satu nilai l, yakni 0. Dalam kasus ini hanya ada satu orbital, dan kumpulan bilangan kuantum untuk orbital ini adalah (n = 1, l = 0). Bila n = 2, ada dua nilai l, 0 dan 1, yang diizinkan. Dalam kasus ada empat orbital yang didefinisikan oelh kumpulan bilangan kuantum: (n = 2, l = 0), (n = 2, l = 1, m = -1), (n = 2, l = 1, m = 0), (n = 2, l = 1, m = +1).
8. Latihan struktur atom
Menggunakan teori bohr, persamaan de broglie, potensial otak satu dimensi, prinsip ketidakpastian, dan lonfigurasi elektron.
Bila gas ada dalam tabung vakum, dan diberi beda potensial tinggi, gas akan terlucuti dan memancarkan cahaya. Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garisspektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom, spektrum ini disebut dengan spektrum atom.
b. Teori Bohr
• Tidak ada energi yang dipancarkan bila elektron berada dalam keadaan stasioner ini. Bila elektron berpindah dari keadaan stasioner berenergi tinggi ke keadaan stasioner berenergi lebih rendah, akan terjadi pemancaran energi. Jumlah energinya, h ν, sama dengan perbedaan energi antara kedua keadaan stasioner tersebut.
c. Spektra atom hidrogen
Menurut teori Bohr, energi radiasi elektromagnetik yang dipancarkan atom berkaitan dengan perbedaan energi dua keadaan stationer i dan j.
7.Kelahiran mekanika kuantum
a. Sifat gelombang partikel
Di paruh pertama abad 20, mulai diketahui bahwa gelombang elektromagnetik, yang sebelumnya dianggap gelombang murni, berperilaku seperti partikel (foton). Fisikawan Perancis Louis Victor De Broglie (1892-1987) mengasumsikan bahwa sebaliknya mungkin juga benar, yakni materi juga berperilaku seperti gelombang. Berawal dari persamaan Einstein, E = cp dengan p adalah momentum foton, c kecepatan cahaya dan E adalah energi, ia mendapatkan hubungan:E = hν =ν = c/λ atau hc/ λ = E, maka h/ λ= p … (2.12)
b. Prinsip ketidakpastian Dari yang telah dipelajari tentang gelombang materi, kita dapat mengamati bahwa kehati-hatian harus diberikan bila teori dunia makroskopik akan diterapkan di dunia mikroskopik. Fisikawan Jerman Werner Karl Heisenberg (1901-1976) menyatakan tidak mungkin menentukan secara akurat posisi dan momentum secara simultan partikel yang sangat kecil semacam elektron. Untuk mengamati partikel, seseorang harus meradiasi partikel dengan cahaya. Tumbukan antara partikel dengan foton akan mengubah posisi dan momentum partikel.Heisenberg menjelaskan bahwa hasil kali antara ketidakpastian posisi x dan ketidakpastian momentum p akan bernilai sekitar konstanta Planck:
xp = h (2.13)
Hubungan ini disebut dengan prinsip ketidakpastian Heisenberg.
Perkiraan ketidakpastian kecepatannya hampir setengah kecepatan cahaya (2,998 x108 m s-1) mengindikasikan bahwa jelas tidak mungkin menentukan dengan tepat posisi elektron. Jadi menggambarkan orbit melingkar untuk elektron jelas tidak mungkin.
c. Persamaan Schrödinger
Fisikawan Austria Erwin Schrödinger (1887-1961) mengusulkan ide bahwa persamaan De Broglie dapat diterapkan tidak hanya untuk gerakan bebas partikel, tetapi juga pada gerakan yang terikat seperti elektron dalam atom. Dengan memperuas ide ini, ia merumuskan sistem mekanika gelombang. Pada saat yang sama Heisenberg mengembangkan sistem mekanika matriks. Kemudian hari kedua sistem ini disatukan dalam mekanika kuantum.Dimungkinkan uintuk memperluas metoda yang digunakan dalam potensial kotak satu dimensi ini untuk menangani atom hidrogen dan atom mirip hidrogen secara umum. Untuk keperluan ini persamaan satu dimensi (2.14) harus diperluas menjadi persamaan tiga dimensi sebagai berikut:(-h2/8π2m)Ψï¼»(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2)ï¼½+V(x, y, z)Ψ = EΨ … (2.19)
Bila didefinisikan ∇2 sebagai:
(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2) = ∇2 … (2.20)
Maka persamaan Schrödinger tiga dimensi akan menjadi:
(-h2/8π2m)∇2Ψ +VΨ = EΨ … (2.21)
atau ∇2Ψ +(8π 2m/h2)(E -V)Ψ = 0 … (2.22)
Energi potensial atom mirip hidrogen diberikan oleh persamaan berikut dengan Z adalah muatan listrik.
V = -Ze2/4πε0r … (2.23)
Bila anda substitusikan persamaan (2.23) ke persamaan (2.22), anda akan mendapatkan persamaan berikut.
∇2Ψ+(8π2m/h2)ï¼»E + (Ze2/4πε0r)ï¼½Ψ = 0 … (2.24)
Ringkasnya, penyelesaian persamaan ini untuk energi atom mirip hidrogen cocok dengan yang didapatkan dari teori Bohr.
d. Orbital Fungsi gelombang elektron disebut dengan orbital. Bila bilangan koantum utama n = 1, hanya ada satu nilai l, yakni 0. Dalam kasus ini hanya ada satu orbital, dan kumpulan bilangan kuantum untuk orbital ini adalah (n = 1, l = 0). Bila n = 2, ada dua nilai l, 0 dan 1, yang diizinkan. Dalam kasus ada empat orbital yang didefinisikan oelh kumpulan bilangan kuantum: (n = 2, l = 0), (n = 2, l = 1, m = -1), (n = 2, l = 1, m = 0), (n = 2, l = 1, m = +1).
8. Latihan struktur atom
Menggunakan teori bohr, persamaan de broglie, potensial otak satu dimensi, prinsip ketidakpastian, dan lonfigurasi elektron.
0 komentar:
Posting Komentar